Atualizando a descrição do blog: Tive a intenção de criar este blog para divulgar conceitos, fatos históricos, curiosidades e outros temas sobre a grande ciência física. Existem muitos outros blogs sobre o assunto, mas a minha intenção principal é tentar escrever sobre assuntos de física vistos na graduação ou de pesquisa física para o público geral. Minhas ideias sobre temas para as colunas surgem de textos e artigos que vou lendo ao longo do meu trabalho acadêmico. Discussões são sempre bem vindas!
Abraço a todos!

quinta-feira, 20 de setembro de 2012

Singularidades na física

Recentemente comecei a estudar um livro de relatividade geral chamado "General Relativity", do autor Robert M. Wald. É um livro de relatividade avançado, pelo menos no meu ponto de vista. Comecei a lê-lo porque me interessei por um assunto no qual encontrei em um apêndice neste livro. Entretanto notei que existe um capítulo exclusivo para se tratar o assunto "Singularidades" na relatividade geral. E então pensei em escrever algo sobre este assunto, no qual deixo claro não ser um especialista, porém é uma consequência muito interessante da teoria da relatividade geral.



Primeiramente, o que é uma singularidade? O termo singularidade não se restringe apenas à teoria da relatividade, mas sim está presente em boa parte das teorias físicas. Basicamente, a singularidade representa uma certa configuração no qual a teoria em que estamos trabalhando não funciona muito bem, pelo menos do ponto de vista matemático. Dizemos também por singularidade como sendo uma estado do sistema no qual o senso comum não consegue compreender o que de fato está ocorrendo. Suponhamos, por exemplo, que temos uma certa quantidade de moléculas de ar dentro de um certo volume. Então é possível descrevermos esse sistema através de uma densidade igual a razão entre a quantidade de ar e o volume. Se mantivermos a quantidade de ar constante e começarmos a diminuir o volume no qual o ar está contido, naturalmente a densidade irá aumentar, e necessitaremos cada vez gastar uma quantidade de energia maior para diminuir o volume, pois o espaço entre as moléculas irá cada vez mais diminuir. Entretanto, fisicamente, poderemos continuar o processo de diminuir o volume até um certo limite, onde não teremos mais condições  de comprimir mais o volume de ar. Porém, matematicamente, podemos continuar o processo além desse limite. Suponhamos então que vamos diminuindo o volume de V para V/2, para V/4, e enfim, para V/1000. O denominador da densidade ficará muito pequeno e por fim tenderá a um valor muito próximo de zero. Quando isso acontecer, dizemos que temos uma singularidade, pois, além de não ser possível reproduzir este experimento no dia a dia, é um estado no qual dizemos que a densidade explode, ou seja, torna-se infinita. Este é, portanto, um exemplo de singularidade.

Bom, voltemos à teoria da relatividade. No contexto da relatividade geral, existe uma equação chamada equação de Einstein, que relaciona a distribuição de matéria no espaço-tempo (de um lado da equação) com a geometria deste espaço-tempo (do outro lado). Sendo assim, em completa analogia ao exemplo dado acima, o que caracteriza uma singularidade na teoria não é a quantidade de matéria em si aglomerada, mas a densidade desta quantidade de matéria no espaço-tempo. Embora a singularidade seja prevista pela teoria da relatividade geral e acarrete consequências interessantes à teoria, a existência de singularidades mostra que a teoria não está completamente adequada a todos fenômenos que se dispõe a explicar. Podemos citar dois casos importantes de singularidades na relatividade geral.



De acordo com observações da estrutura do universo, verifica-se que este está em expansão acelerada, ou resumidamente, em expansão. Por isso, o modelo mais simples de evolução do nosso universo sugere que se voltarmos no tempo, o universo irá diminuir, até que chegará um momento em que toda matéria estará concentrada em um único ponto, de modo que a densidade tornar-se-á infinita.

Outro exemplo é a existência de buracos negros, que são previstos pela teoria da relatividade geral e que são estruturas com densidade de matéria tão grande, dizendo-se infinita, que nem mesmo a luz pode escapar à sua atração gravitacional se passar há determinada distância do centro de um buraco negro.

Ambos os exemplos acarretam fenômenos físicos que fogem ao escopo exclusivo da relatividade geral e dizem respeito à mecânica quântica, a mecânica do "muito pequeno". Portanto, uma teoria relativística com características quânticas é necessária para talvez poder dar conta das singularidades. Muitos trabalhos mostram que para realizar a junção da relatividade com a mecânica quântica, a primeira teoria deve ser modificada.

Desculpe-me pelo tamanho do texto. Não consegui resumir mais.
Abraços!